


GCE MARKING SCHEME

CHEMISTRY AS/Advanced

SUMMER 2011

PMT

CHEMISTRY - CH5

PMT

Q.2	(a)	(i)	$H_2 + \frac{1}{2} O_2 \rightarrow H_2 O$	[1]
-----	-----	-----	---	-----

(ii)	Higher efficiency / no carbon dioxide emissions / water only / no	
	greenhouse gases / can use renewable energy resources.	[1]
	Too vague - do not accept clean / no polluting gases / no global	
	warming.	

	(iii)	A = Salt bridge (1) B = High resistance voltmeter /potentiometer (1) C = Platinum electrodes (1)	[3]
(b)	(i)	$\Delta H = 2 \times \Delta H (H_2O) + \Delta H (CO_2) - \Delta H (CH_3OH)$ = 2 x -286 + (-394) -(-239) (1) = -727 kJ mol ⁻¹ (1)	[2]
	(ii)	Entropy of (methanol) gas is higher than liquid (1) So entropy change will be more negative (1)	[2]
	(iii)	$\Delta G = -727000 - (298x - 81) = -703 \text{ kJ mol}^{-1} (1)$ Allow ECF Negative ΔG means reaction is feasible. (1)	[2]

Total [11]

[2]

Q.3 (a) Any 2 for (1) each from:

- Measure pressure (at constant volume) over time
- Measure volume (at constant pressure) over time •
- Colorimetry/ measuring colour over time • 1 mark allowed if time not mentioned
- (b) (i) When concentration doubles, rate doubles (1)

Therefore first order or rate is proportional to concentration (must give reason to obtain this mark) (1) [2]

Credit possible by alternative methods:

Calculate k for each and show that all values are the same; Calculate k for one concentration and use to calculate other values.

(ii)	$k = Rate \div [N_2O_5]$	e.g. k = $3.00 \times 10^{-5} \div 4.00 \times 10^{-3}$ (1)
		= 7.50 x 10^{-3} (1) must be 3 significant figures
	Units = s⁻¹ (1)	[3]

(iii) Rate determining step must have one N_2O_5 molecule as reactant. (1) Mechanism A matches this rate equation (1) need reason to get this mark [2]

Accept reverse argument.

(c) (i)
$$K_{p} = \frac{P_{N_{0}}Q_{*}}{P_{N_{0}}Q_{*}}$$
 [1]

- (ii) Increasing temp shifts equilibrium to left / favours endothermic reaction (1) so value of K_p is decreased. (1) [2]
- $\begin{array}{l} P_{N2O4} = 9.5 \ x \ 10^3 \ \text{Pa} \ \ (1) \\ K_p = 9.5 \ x \ 10^3 \ \div (2.81 \ x \ 10^5)^2 = 1.20 \ x \ 10^{-7} \ \ (1) \ \ \text{Allow ECF} \end{array}$ (iii) Units = $Pa^{-1}(1)$ Mark consequentially on answer to (c)(i) [3]

Total [15]

Q.4	(a)	(i)	Transition metals have partially filled <i>d</i> -orbitals (in atom or ion)	[1]
		(ii)	Iron and copper have partially filled d-orbitals in their ions , zinc de not	oes [1]
	(b)	vocab QWC:	organisation of information clearly and coherently; use of specialis oulary where appropriate.(1) selection of a form and style of writing appropriate to purpose and lexity of subject matter. (1)	
	 Ligands cause d-orbitals to split into 2 higher energy/ 3 lower energy Electrons <u>absorb light</u> (frequencies) to move to <u>higher</u> energy level Colour seen is colour transmitted/reflected/not absorbed Copper(II) complexes absorb red /orange/yellow/all colours except b [MAX 4 marks from points a 			
			fferent ligands cause different splittings / different ΔE . opper(I) ion has full d-orbitals.	
			electrons cannot move to upper energy levels.	
			[OVERALL M	AX 6]
	(c)	(i)	$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$	[1]
	•		Fe oxidation state goes from +3 to 0 (1) / so it is reduced (1) OR C (not CO) oxidation state goes from +2 to +4 (1)/ so it is bein oxidised. (1) Allow ECF	ng [2]
		(iii)	Stable oxidation state of (C is +4 whilst) Pb is +2 (1) Due to inert pair effect becoming more significant down the group	. (1) [2]
	(d)	(i)	$6Fe^{2+} + Cr_2O_7^{2-} + 14H^+ → 6Fe^{3+} + 2Cr^{3+} + 7H_2O$	[1]
		(ii)	Moles $Cr_2O_7^{2^-} = 23.80 \times 0.0200 \div 1000 = 4.76 \times 10^{-4}$ moles (1) Moles $Fe^{2^+} = 4.76 \times 10^{-4} \times 6 = 2.86 \times 10^{-3}$ moles (1)	[2]
		(iii)	Mass Fe in sample = $2.86 \times 10^{-3} \times 10 \times 55.8 = 1.59 \text{ g}$ (1) Percentage Iron = $1.59 \div 1.870 \times 100 = 85.2\%$ (1)	[2]
			Tota	I [20]

- **Q.5** (a) Named compound examples, need both name and use for (1)
 - Sodium chlorate(I) = bleach
 - Sodium chlorate(V) = weedkiller
 - PVC = windows frames/guttering/pipes/insulation for electrical wires
 - Dichloromethane solvent / paintstripper
 - CFCs = refrigerants / aerosol propellants
 - Aldrin / Dieldrin / DDT = Insecticides

(b) (i)
$$Cl_2 + 2Br \rightarrow Br_2 + 2Cl^2$$

- (ii) Emf for reaction of bromide with chlorine is +0.27 V / E^ø for chlorine is more positive than for bromine. (1)
 - Emf for reaction of bromide with iodine is -0.55 V / E^ø for iodine is less positive than for bromine. (1)
 - Reactions are only feasible if Emf is positive / if E^ø for oxidising agent is more positive than for species being oxidised. (1)
- [3] (c) (i) White precipitate with (sodium) chloride, yellow precipitate with (sodium) iodide [1]
 - (ii) QWC: legibility of text; accuracy of spelling, punctuation and grammar; clarity of meaning. (1) [1]
 - NaCI: Steamy gas / bubbles (1)
 - Nal: Steamy gas /smell of rotten eggs / purple vapour or brown solution or black solid / yellow solid (1 mark for 2 observations)
 - NaCl: NaHSO₄, HCl / Nal: NaHSO₄ / HI / I₂ / H₂S / SO₂ / S / H₂O (1 mark for 2 products; 2 marks for 4 products)
 - lodide is easier to oxidise / iodide is a stronger reducing agent than chloride (1)

[5]

[1]

[1]

(d) (i) (Almost) completely dissociates to release H⁺. [1]

(ii)
$$\mathbf{K}_{a} = \frac{[\mathbf{M}^{+}][\mathbf{O} \, \mathbf{C}]^{-}}{[\mathbf{H} \, \mathbf{O} \, \mathbf{C}]}$$
[1]

(iii) $[H^+] = 10^{-pH} \text{ OR } pH = -\log [H^+]$ (1) $[H^+] = 5.88 \times 10^{-5} \text{ mol } dm^{-3}$ (1) [2]

(iv)
$$K_a = \frac{[H^+][o cl^-]}{[Ho cl]} = \frac{(3.88 \times 10^{-5})^2}{0.100}$$
 (1)= 3.47 x 10⁻⁸ (mol dm⁻³) (1)
(allow consequential answers) [2]

(v) pH above 7 (up to 10) (1)
 OCI⁻ in equilibrium with HOCI / OCI⁻ will remove H⁺ from solution (1) [2]

Total [20]

GCE Chemistry MS - Summer 2011